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ABSTRACT

We establish the existence of a homoclinic solution of Qie Hamiltonian system

(*) 4+ (t,q) = 0

assuming that the potential V is T periodic in t, grows more rapidly than quadratically as
4qt--.- and satisfies some other technical conditions. The homoclinic solution is obtained
as the limit of subharmonic solutions of (*). The subharmonic solutions are found using a
minimax argument.
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Homoclinic orbits for a class of Hamiltonian systems

Paul H. Rabinowitz

Introduction

There is a large literature on the use of variational methods to prove the existence

of periodic solutions of Hamiltonian systems. However it is only relatively recently that

these methods have been applied to the existence of homoclinic or heteroclinic orbits of

Hamiltonian systems. See [1-5]. Such orbits have been studied since the time of Poincar6

but mainly by perturbation methods.

Our goal in this paper is to prove the existence of homoclinic orbits for the second

order Hamiltonian system:

(HS) + Vq(t,q) =0

where q E R1 and V satisfies

(V1) V(t, q) = -1/2(L(t)q,q) + W(t, q) where L is a continuous T-periodic matrix valued

function and W E C1 (R x R1,R) is T-periodic in t,

(V2) L(t) is positive definite symmetric for all t E [0, T],

(V3) there is a constant A > 2 such that

0 <IzW(t,q) <_ (q, Wq(t,q))

for all q E Rn\{O}, and

(V4 ) W(t,q) = o(jqj) as q - 0 uniformly for t E [0,T].

Note that (Vi) - (V4 ) imply that q(t) - 0 is a "trivial" homoclinic orbit of (HS). We

will prove:

Theorem 1: If V satisfies (VI) - (V4 ), (HS) possesses a nontrivial homoclinic solution,

q(t) emanating from 0 such that q E W"' 2 (R,R').

Our study of (HS) was motivated by a recent paper of Coti-Zelati and Ekeland [1]

which treated the first order Hamiltonian system. or

(2) i= JH(t,z) J= id

where z E R 2n. The function H E C2 (R x R 2n,R) is T periodic in t with H(t,z) =

1/2(Az, z) + R(t, z) where A is a constant symmetric matrix such that JA has no eigenval- )__
tty Codes

ues with 0 real part and R is strictly convex, satisfies V3 (with q E R 2 "), and IR(t,z)I _ and/or

KIzj" for all z E R 2, for some K > 0. The convexity of R leads to a "dual" variational -ial
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formulation of (2) which Coti-Zelati and Ekeland then study. Using a concentration com-

pactness argument in the sense of P. L. Lions [6], they are able to apply a variant of the

Mountain Pass Theorem to find a homoclinic orbit of (2).

Recently Hofer and Wysocki [51 have generalized the results of (11 by dropping the

convexity conditions on H but also requiring that IRz(t,z)j _< K zMl- 1 for all z E R .

They use a rather different argument than [11 based on the study of certain first order

elliptic systems that have also been useful in recent work on symplectic geometry. See e.g.

[7].

Our approach to (HS) differs from both of the above. We will find the homoclinic

solution q as the limit, as k -+ oo, of 2kT periodic solutions, qk. The approximating

solutions are obtained via the Mountain Pass Theorem. Then appropriate estimates for

the critical values, ck associated with qk and on qk allow us to pass to a limit to get q.

The details will be carried out in §1.

§1. Proof of Theorem 2

For each k E N, let Ek = W,2t.(,RI), the Hilbert space of 2kT periodic functions

on R with values in R' under the norm

kT

(fLk(14 (t) 12 + q(t) 2 )dt) 1/2

To exploit the form of (HS) and (V2), it is more convenient to work with the equivalent

norm
IlJ2 = kT

(3) k f_%T(4(t)12 + (L(t)q(t),q(t))]dt

Set

(4) Ik(q) = f-k T21'j1 - V(t,q)]dt

= l1q - k W(t,q)dt.
2 J-kT

Then Ik E Cl(Ek,R) and satisfies the Palais-Smale condition. See e.g. [8, Theorem 2.61].

Moreover critical points of Ik in Ek are classical 2kT periodic solutions of (HS). We will

obtain a critical point of Ik by using a standard version of the Mountain Pass Theorem.

Since the minimax characterization it provides for the critical value is important for what

follows, we state the result precisely. Let Bp(O) denote an open ball of radius p about 0.

Proposition 5 (9]: Let E be a real Banach space and I E CI(E,R) satisfy the Palais-

Smale condition. If further 1(0) = 0,

3



(11) There exist constants p, a > 0 such that

BaB,(o)

and

(12) There exists e E E\R(0) such that I(e) < 0,
then I possesses a critical value c > a given by

(6) c = inf max Ik(g(s))
ger 8E[O,1J

where

(7) r = {g E C([0,1],E)jg(O) =0 and g(1) = e}

For our setting, clearly Ik(O) = 0. Moreover by (V3 ),

(8) W(t, e) < W(t,) for 0 < 1

>w(t, lei 1 I -> 1

It is easy to see that there are constants 63 k, -yk > 0 such that

(9) Pikjjq11L-,[-kT,kTj :5--HqHlL*[-kT,kT] <  -Ykllql[k

for all q E Ek. Therefore if Ilqjjk - - Iyq1IL- < 1 and

/kT /kr q(t),
(10) W (t, q(t)) dt < W (t, F qt-~ d

kr T- ' kr T I j)jq ~' " <

< max IW t,S)ql - <l
- tE[O,T],4_1k

Since 1s > 2, (10) shows

(f) W(t,q(t))dto(jjqjIj) as q- O in Ek
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and
1

(12) 4k(q) = -IIq11 + o(ljq 11)

as q -0 0 in Ek. Hence h, satisfies (11) of Proposition 5. Moreover by (8) again, there are

constants a,, a2 > 0 such that

kT(13) Ik(9 s0) :5 1)211I2Il - a, /11 f IolIdt + a2

for all f3 E R and P E Ek\{0}. Now (13) shows (12) holds with e = ek, a sufficiently large

multiple of any vo E Ek\{0}. Consequently by Proposition 5, Ik possesses a positive critical

value cA given by (6) and (7) with E = Ek and r = rk. Let qk denote the corresponding

critical point of I on Ek. Note that qk 3 0 since Ck > 0.

The next step in the proof is to obtain k independent estimates for ck and qk. Let

vp E El\{0} such that

(14) (i) p(±T) = 0 and (ii) I,(v) _ 0

(By (13), if V satisfies (i), any sufficiently large multiple 'P of ik satisfies (i) and (ii)). Define

(15) ek(t)= p(t), Itl < T

=0 T < Itl _kT.

Then by (12), e E Ek\{0} and Ik(ek) = i(Cei) :5 0. Note also that gk(s) = se E I7k for

all k E N and IA(gk( s)) = I,(gi(s)). Therefore by (6),

(16) Ck max Ii(gi(s)) M

independently of k.

The estimate (16) leads to a priori bounds for qk. Since I'(qk) - 0, by (V2 ),

(17) Ck = lk(qk) - 1 I(qk)qk

= f_- (qkW,(tq)) - W(t, qk)]dt

-> (I7- 1 )jrW(t, qk)dt.

Hence (4) and (17) yield a k-independent bound for Ijqk(1k:

kT 2
(18) IlqA&I[ = 2 ck + W(t,qk)dt < (2 + - )M M
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A k-dependent bound on Jtqk11L [-kT,kT now follows from (9). Moreover a better estimate

can be obtained as follows: For q E Ek and t, -r E [-kT, kT],t
(9) jq(t)l 1 lq(r)I + If 4(s)dsl.

Integrating (19) over [t - .1, t + I shows

(20) Jq(t) 2_ 1(t)Idr + - 1 4(s)dsJdr
2 2

2(]t _ (14(Tr)12 +19t2 d)/.
2

Hence

(21) IlqllC.-kAT,kT -- a3JqlJk

where a3 depends on L. Now (18) and (21) imply

(22) JJqk JJL-J-kTkT) -- aa M/2 -- M2

with M 2 independent of k. Finally (HS) provides bounds for qA in C 2[-kT, kT indepen-

dent of k.

The C2 bounds just obtained for q1 together with (HS) and (18) show a subsequence

of q; converges in C2 c(R, R") to a solution q of (HS) satisfying

00
(23) +[1412 +t(Lq, q)dt < oo

It remains to show that q 0 0 and is a homoclinic solution of (HS). By (23),

(24) />1 112 + lq1l2dt - 0

as m - oo. Hence by (20), q(t) -. + 0 as t -- :oo. If

(25) I 1qi2 dt --+ 0

as m - ±oo, (20) with 4 replacing q and (24) imply 4(t) -- 0 as t -}- ±oo. To verify (25),

by (HS), (Vi), and (24), it suffices to show

r. +1

(26) I IWq(t,q)dt -+ o
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as m --+ ±oo. Since Wq(t,O) = 0 and it has already been shown that q(t) --+ 0 as t --+ ±oo,
(26) follows.

Lastly we must show that q 0 0. Taking the inner product of (HS) with qk and

integrating by parts gives:

(27) llqkJ12 = C (qk, Wq (t, qA:)) dt.
k kT

Set Y(O) = 0 and for s > 0,

(28) Y(s) = max ( Wq(t,))
,toT, IC12
IV1< S

Then by (V3) and (8), it is easy to check that Y E C(R+,R+), Y(s) > 0 if s > 0, Y is

monotone nondecreasing, and Y(s) --+ oo as s --+ oo. The definition of Y shows

(29) (qk(t),Wq(t,qk(t)) < Y(Ilqkllz**[-kT,A:T])
Iqk(t)12

for all t E [-kT, kTI. Hence by (27) and (29),

kT

< a3Y(jqk Le*[_kT, kTl)Ijqk jk.

Since Ilqkljk > 0,

(31) Y(fqk1ILa[-kTkTl) 2 !

Consequently the properties of Y imply there is a,6 > 0 (and independent of k) such that

(32) IlqkilL-[-kT,ArI >- JO

Now to complete the proof, observe that by the T-periodicity of L and W, whenever
p(t) is a 2kT periodic solution of (HS), so is p(t + jT) for all i E Z. Hence by replacing

qj, (t) earlier if necessary by qk(t + jT) for some i E (-k, kI n Z, it can be assumed that the

maximum of jqk(t) occurs in [0, TI. Therefore if qk(t) -- 0 in Ct , along our subsequence,

(33) Ilqk1ILr[-kT,kTj = max jqk(t)l -- 0

tE[O,T]

contrary to (32). The proof is complete.
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Remark 34: If V is independent of t, stronger results can be obtained by more direct

arguments as will be shown in a joint paper with K. Tanaka.
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